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Abstract

Makinson and van der Torre introduced a number of input/output (I/O) logics
to reason about conditional norms. The key idea is to make obligations relative to
a given set of conditional norms. The meaning of the normative concepts is, then,
given in terms of a set of procedures yielding outputs for inputs. Using the same
methodology, Stolpe has developed some more /O logics to include systems in
which the rule of weakening of the output (or principle of inheritance) is replaced
by a rule of closure under logical equivalence. We extend Stolpe’s account in two
directions. First, we show how to make it support reasoning by cases—a common
form of reasoning. Second, we show how to inject a new (as we call it, aggregative)
form of cumulative transitivity, which we think is more suitable for normative rea-
soning. The main outcomes of the paper are soundness and completeness theorems
for the proposed systems with respect to their intended semantics.

1 Introduction

Deontic logic formalises reasoning with norms. It is relevant for a number of areas
in computer science and artificial intelligence, like in particular normative multi-agent
systems [13, 9] and machine ethics [2].

The present paper focuses on so-called input/output logics (I/O logics) as initially
put forth by Makinson and van der Torre [26]. These aim at generalizing the theory of
conditional obligation from modal and conditional logic [18, 24] to the abstract study of
conditional codes viewed as relations between Boolean formulae. The meaning of the
normative concepts is given in terms of a set of procedures yielding outputs for inputs.
Detachment (or modus-ponens) is the core mechanism of the semantics being used.
As argued by Boghossian [10], detachment is part of the meaning of a conditional
statement. The proof theory is formulated in terms of inference rules operating on
pairs (ax) of formulae (readf a, then x is obligatory) rather than on formulae.

The proposed framework can be based on either classical logic or intuitionistic
logic [35, 32]. It can be extended in order to model different notions of permission
[28, 8, 42], and in order to handle more complex phenomena like norm violation [27],
reasoning about conflicting norms and about priorities [31, 46] and norm change [6, 7].
It has been applied to other areas of knowledge representation, like non-monotonic rea-
soning [27, 31], causal reasoning [4, 5] and argumentation theory [23]. Connections

1According to him, the disposition to reason according to modus-ponens is constitutive of the possession
of the concept of conditional, and thus of the concept of norm. Note that such a motivation is not in the
original papers [26, 27]. It is given and discussed in more detail in [34].
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with other formalisms in knowledge representation and philosophigid have also
been found and studied [27, 44, 16, 43]. For an overview of input/output logics, the
reader is referred to the handbook chapter on 1/O logic [34]. A collection of benchmark
examples can be found in [37]. The interested reader will also find in [3] an implemen-
tation in Isabelle/HOL of various deontic logics, including the original 1/0 logics for
obligation.

These developments are not germane for our main purpose in this paper, and so we
will leave them aside. Our primary contribution is to develop variants of the original
input/output logics with the following two salient features:

e First, they do not satisfy the rule of “weakening the output” (WO). This is the
rule: from (a,X) infer (a, y) wheneverx +~ y, wherer+ is the deducibility rela-
tion used in classical propositional logic. This rule echoes the well-known rule
of “right weakening” (RW) used in non-monotonic logic [21]: fraa} X infer
a p ywheneverx + y, wherel stands for the non-monotonic inference rela-
tion. All the input/output logics of Makinson and van der Torre satisfy the rule
WO. Those studied in this paper satisfy instead the rule “fronx)@fer (a,y)
wheneverx + y andy + X'. In this respect, norms remain closed under logical
equivalence.

e Second, instead of satisfying the traditional rule of “cumulative transitivity” (CT),
they satisfy a variant rule called “aggregative cumulative transitivity” (ACT) dis-
cussed by van der Torre [45]. CT is also familiar from the literature on non-
monotonic logic. This is the rule: from (&) and (ax X, y) infer (a,y). ACT is
the rule: from (ax) and (an X, y) infer (a,x A y). Itis the deontic analogue of
the rule of “conjunctive cumulative transitivity” discussed by Verheij [47] in the
context of the study of so-called abstract argumentative systems.

WO and CT are widely accepted for ontic conditionals. Their counterpart for deontic
conditionals has generated some controversy.

First, it is known that WO creates a problem when it comes to handling normative
dilemmas. There is a normative dilemma, when we both kawe) and(a,-x). Goble
[15] presents an in-depth discussion of all the issues surrounding the notion of norma-
tive dilemma. For present purposes we shall just mention the fact that the problem
essentially arises from the interplay between WO and the so-called AND rule: from
(a,x) and(a,y), infer (a,xAy). The following derivation shows that a system contain-
ing these two rules will not allow for deontic dilemmas without deontic “explosion”:

AND (a,x) (a,-x)
(a, XA =X)
WO ——+——
(ay)

Thereare two ways to prevent deontic explosion. One consists in letting AND go,
and the other consists in letting WO go. In this paper, we follow the second approach,
because there are independent reasons for taking WO out, to which we now turn.

A second lesser-known (but no less compelling) reason for letting WO go may be
given in relation with norm compliance checking. WO yields the rule of “conjunction
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elimination” as a special case. This is the rule: fromXa, y) infer (a, X). Goble

[14, p.183-184] and Hansen [17, §6.2], among others, have argued against conjunction
elimination. The rule creates problems when assessing the level of compliance with
the norms. There are cases where the two statesadfsaffnentioned in the obligation)

are only conjunctively required. If the obligation ®falone was derived, then when
assessing how well or badly the agent did a strange consequence would follow, in the
event that the agent madebut noty, true. One would have to acknowledge that “he’s
not a complete scoundrel” [14, p.183], since at least one obligation (albeit a derived
one) was fulfilled. Intuitively, one would like to be able to say thabbligations have

been fulfilled, and thabothingright has happened. This may be illustrated with the
following example.

Example 1 (“Sing and dance!” [14]) Suppose there is a party of song and dance per-
formers given in honour of Gene. Everyone ought to perform a song and dance routine,
because Gene loves them both, and cannot tolerate either without the other. One guest,
Fred, chooses not to sing but only to dance. Gene is appalled. The party is ruined,
because of Gene’s tantrum.

We now briefly explain our main reason for using ACT in place of CT. It is the
following one: counter-examples to CT may be found in the literature [22, 19, 25];
these are blocked, when ACT is used in place of CT. This is because they all rely on
the intuition that the obligation of ceases to hold when the obligation @, x) is
violated. Due to Broome, the following example may be used to illustrate this point.
We use the standard notati¢n, x) for the unconditional obligation of, whereT is a
zero-place connective standing for “tautology”.

Example 2 (Marathon [12]) Suppose you have entered the marathon. Consider the
following instantiation of CT:

You ought to exercise hard everyday (T,%)
If you exercise hard everyday, you ought to eat heartily (%)
.. You ought to eat heartily (1Y)

The conclusion seems to be counter-intuitive. Intuitively, the obligation to eat heartily
no longer holds, if you take no exercise. In this example, the correct conclusion is
(T.xAYy), and not(T,y). Thus, ACT appears to be more suitable for normative rea-
soning, because it keeps track of what has been previously detached.

Of course, given WO, ACT implies CT. This gives another independent reason for
letting WO go-besides the aforementioned ones. In the presence of the latter rule, we
would not get the chaining of rules right.

The layout of this paper is as follows. Section 2 lays the groundwork, and looks at
the case of one-step detachment. More precisely, we consider the first two standard 1/0
operations defined by Makinson and van der Torre, called “simple-minded’) @ud
“basic” (oub), respectively. Both develop output by detachmemit; spells out the
basic mechanism, amalit, extends it in order to handle disjunctive inputs. For each of
these 1/O operations a variant is defined that does not satisfy WO. Section 3 goes one
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step further, and shows how to handle iteration of successive detachrmbetfocus

is on the standard I/O operations called “reusable” {joanhd “basic reusable” (ot

by Makinson and van der Torre. We introduce a variant of each for which WO fails and
for which rule chaining is supported in the form of ACT. In each case, the proposed
variation is provided with equivalent axiomatic and semantic characterisations.

This paper is an extended version of an earlier paper presented at DEON 2014 (item
[35] in the references). It builds on previous research by Stolpe [40, 41], who began
work on versions of input/output logic without WO. His focus isaut; andouts. In
[36, 38] we study variant systems, in which in addition a consistency proviso restricts
the application of AND and ACT. The study [30] revisits the notion of permission as
described in [28] from the perspective of these new systems.

2 Single-step Detachment

2.1 Preliminaries

First, some definitions are needed. A normative code is & st conditional obli-
gations. A conditional obligation is a pair (&), wherea andx are two formulae of
classical propositional logic. We use this notation instea@¢k | a), because the lat-

ter has distinct interpretations in the literature. In the notatiow)(ahe first elemena

is called the body of the rule, and is thought of as an input, representing some condition
or situation. The second elements called the head of the rule, and is thought of as
an output, representing what the norm tells us to be obligatory in that situation. In 1/O
logic, the main construct has the form

x € out(N,a)

Intuitively: given inputa (state of afdirs), x (obligation) is in the output under norms
N. An equivalent notation is(a, x) € out(N). The I/O operations to be defined in this
paper will be denoted by the symb@lin order to avoid any confusion withut.

Some further notation’ is the set of all formulae of classical propositional logic.
Given an inputA ¢ £, and a seN of norms,N(A) denotes the image & underA,
i.e.,N(A) = {x: (a,x) € N for somea € A}. Cn(A) denotes the setx: A+ x}. The
notationx i+ y is short forx - y andy + x. GivenM ¢ N, we denote bh(M) the set
of all the heads of elements M, vizh(M) = {x: (a,x) € M}.

2.2 Simple-minded I/O Operation

We start with the simple-minded 1/O operationt;. The 1/O operation to be defined
here is noted?D;. It is essentially a variation on the I/O operatiBiN; put forth by
Stolpe [40, 41]. The main reason for including such an operation in our study is that
the completeness result for it will be needed for subsequent developments.

Definition 3 (Semantics) x € O1(N, A) if and only if there is some finite I N such
that

e M(Cn(A)) #2,and
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e X+ AM(Cn(A))

Intuitively: x is equivalent to the conjunction of heads of rules in sdvhe N that are
all triggered by inputA.

The main difference betweé&h andPN; arises whe\ does not trigger any norm,
viz. M(Cn(A)) = @ for all M ¢ N. In this limiting case PN; outputs the set of all
tautologies, while?; outputs nothing. Von Wright [48, pp. 152-4] argues, rightly in
our view, that the obligation of does not express a genuine prescription.

O, is monotonic with respect to the input set. The latter claim requires a careful
and detailed proof, because there is a pitfall to avoid.

Theorem 4 (Factual monotony) O1(N, A) < O1(N, B) if Cn(A) cCn(B).

Proof. Assumex € O1(N,A) andCn(A) < Cn(B). From the former, there is some
finite M; € N such thatM;(Cn(A)) # @, and

1. x4~ AM1(Cn(A))
There is no guarantee that input tloes not trigger more pairs M; thanA does.
To circumvent this problem, the argument takes a detour through the set
M; ={(c,y) eM;:ceCn(A)}

Thus, My is M; “stripped of” all the pairs that are not triggered By We have
M1(Cn(A)) = M7 (Cn(A)). We also havéM; (Cn(A)) = M7 (Cn(B)), viz.

{y:(c,y) eMj,ceCn(A)} = {y: (c,y) e M],ceCn(B)}

The c-direction follows from the second opening assumpti@n(A) c Cn(B). The
o-direction follows from the definition oM} . The argument may, then, be continued
thus:

2. x4~ AM7(Cn(A))
3. x4~ AM7(Cn(B))
Thus,x € O1(N, B) as required.m
It immediately follows thatD; (N, A) ¢ O1(N, B) whenevelA c B.
We setO1(N) = {(A,x) : xe O1(N,A)}.

The notion of derivation is defined as in standard I/O logic (see, e.g., Parent et al.
[33]) except that(T, T) is not allowed to appear in a derivation unless it is explicitly
given in the selN of assumptions. We writéa, X) € Dj(N) when there is a derivation
of (a,x) from N. The subscript is used to distinguish the systems. To say that, given
a setR of rules, there is a derivation @i, x) from N amounts to saying that there
is a sequencey, ..., a, of pairs of formulae such that, = (a,x) and, for alli such
that 1< i < n-1, eithera; € N or q; is obtained from preceding elements(s) in the
sequence using a rule R. The elements in the sequence are all pairs of the form
(b,y). Derivation steps done in the base logic are not part of it.

Definition 5 (Proof system) (a,x) € D1(N) if and only if there is a derivation of
(a,x) from N using the rule¢SI, EQ, AND}:
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(a,x) b-a (a,x) XYy
ST ) Ay

(ax)  (ay)
(a,xny)
WhereA is a set of formulae(A,x) € D1(N) means thafa,x) € D1(N), for some

conjunctiona of formulae, all taken from a (finite) subset 8f D;(N,A) is {x :
(A.x) e Di(N)}.

AND

Theorem 6 O; validates the rules db; (for individual formulae a).

Proof.
For SI. The argument is virtually the same as in the proof of Theorem 4.
For AND. Assumex € O1(N,a) andy € O1(N,a). Thus, there aré1;, M, ¢ N such
thatM;(Cn(a)) # @, M2(Cn(a)) # @ and
1. x4~ AMy(Cn(a))
2. y4- AMy(Cn(a))

Hence
3. xay4- AMi(Cn(@)) A (AM2(Cn()))
PutM3 = M; u M. We have
Ms(Cn(@)) =M1(Cn(@a)) u M2(Cn(@))
One, then, gets
4. xny -~ AM3z(Cn())

Thus,xay e O1(N,a) as required.

For EQ, the argument is straightforward, and is omitted. (Remember tlaatjHfb,
thenCn(a) =Cn(b).) m

Soundness tells us that what is derivable is also valid; thét (according to the
proof theory) the paifA,x) is derivable fromN, then (according to the semantics)
given inputA xis in the output under norm. Formally, this can be written as shown
below. Like in modal logic, we distinguish between a weak and a strong version of the
theorem.

Theorem 7 (Soundness, weak versionP;(N,a) ¢ O1(N,a).

Proof. Assumex € D;(N,a), viz (a,x) € D1(N). Letas, ..., an be a derivation of
(a,x). We show by induction onthat, for all 1<i < n,a; € O1(N).

For the basis of the induction, whetg is, e.g.,(a,x), the argument is straightfor-
ward. By the definition of the notion of derivatio(g, x) € N. PutM = {(a,x)}. We
haveM(Cn(a)) = {x}, and sox € O1(N, a) by Definition 3, and theija, x) € O1(N).
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For the inductive part of the proof, we assume as an inductive hypothesis;
O1(N) forall j <i, and argue that; € O1(N) too. Either i)a; € N or i) «; is obtained

from previous pairs using a rule. In case i), a similar argument as for the base case

yieldsa; € O1(N). In case ii), the proof goes as follows.

e «; = (&,%) is obtained using SlI. In this case, there is some i such that
aj = (aj,%) € D1(N) anda; + &. By the inductive hypothesiga;, x;) € O1(N),
i.e. X € O1(N,a;). By Theorem 6,x € O1(N,&), and soa; € O1(N) as
required.

e i = (&,X) is obtained using AND. In this casg, is of the formx; A x, with
k,j <iandej = (&,%;) € D1(N) anday = (&, %) € D1(N). By the inductive
hypothesis(a;, X;) € O1(N) and (&, X) € O1(N), viz Xj € O1(N, &) andx €
O1(N,&). By Theorem 6x; A % € O1(N, &), and sax; € O1(N) as required.

e a; = (&,x) is obtained using EQ. In this case, therejis i such thatey; =
(a&,%j) € D1(N) andx -~ X;. By the inductive hypothesiga;, x;) € O1(N),
i.e. X; € O1(N,a). By Theorem 6,x € O1(N,&), and soa; € O1(N) as
required.

This ends the proofm
Theorem 8 (Soundness, strong versionP1(N, A) € O1(N, A).

Proof. Let x e D1(N, A), i.e. (A,x) € D1(N). So there is a conjuncticaof elements
of A such that(a, x) € D1(N). By Theorem 7(a,x) € O1(N), and thusx e O1(N, a).
ButCn(a) cCn(A). By Theorem 4xe O1(N,A). m

Completeness tells us that what is valid is also derivable;ishaft (according to
the semantics) given input x is in the output under norni, then (according to the
proof theory) the paifA, x) is derivable fromN. Formally, this can be written as:

Theorem 9 (Completeness, strong version)1(N, A) € D1(N, A).

Proof. Assumex e O1(N, A). So there exists some finiké c N such thaM(Cn(A)) =
{Xg,...%n} # @ andx - Al;%. For eachx, there is some&; ¢ Cn(A) such that
(a,%) € M. For eacha, there is also a conjunction of elements inA such that
bi - &. A derivation of(A, x) from M, and hence fronN, is shown below.

(aq, X1) (@n, Xn)
—— S| —— S|
(ALibix)) = (AL1bi, Xn) AND
EQ (AL b ALy %)
(AL1bi,x)

This is a derivation of(A,x), as AiL, b is a conjunction of elements iA. Hence
x € D1(N,A) as requirecs
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2.3 Basic I/O Operation

In this section, the account described in the previous section is extended to the basic
I/O operationout,, which supports reasoning by cases, viz. the rule

(a,x) (b,x)

OR
(avb,x)

Thel/O operation is denote@,, and the corresponding proof system is calizd

A setV of wffs is said to be maximal consistent whenever it is consistent and none
of its proper extensions is consistent. Thatist 1; and ify ¢ V, thenVu {y} + 1. V
is said to be complete if it is either equal£oor maximal consistent.

Definition 10 (Semantics) O2(N,A) =n{O1(N,V) : Ac V,V completg.
Theorem 11 O1(N, A) € O2(N, A).

Proof. Let x ¢ O1(N,A). LetV be a complete set such thatc V. By Theorem 4,
x € O1(N,V). By Definition 10,x € O,(N, A) as required.m

Theorem 12 (Factual monotony) O2(N, A) < O»(N, B) if Cn(A) cCn(B).

Proof. Assumex € O>(N,A) andCn(A) cCn(B). LetV be a complete set such that
B c V. We haveCn(B) < Cn(V) = V. From this and the second opening assumption,
Cn(A) c V. So,A c V. From this and the first opening assumptiare O;(N,V).
Thus,xe O2(N,B). =

Definition 13 (Proof theory) (a,x) € D,(N) if and only if there is a derivation of
(a,x) from N using the rules dP; supplemented with

(a,x) (b,x)

OR
(avb,x)

Thenext theorem appeals to the fact tiiat validates AND and EQ for an input set of
arbitrary cardinality rather than just a singleton set. The argument is virtually the same
in both cases. Details are omitted.

Theorem 14 O, validates the rules aP, (for individual formulae a).

Proof. For SI. Assumex € O,(N,a) with b - a. LetV be a complete set such that
beV. Fromb+ a, we getae V. By Definition 10, we inferx e O1(N, V). This shows
thatx e O,(N,b).

For AND. Assumex € O,(N,a) andy € O,(N,a). LetV be a complete set such
thata € V. By Definition 10,x € O1(N, V) andy € O1(N, V). SinceO, validates AND,
xAyeO1(N,V). This shows thak Ay € O2(N, a).

For OR. Assume € O>(N,a) andx € O2(N,b). LetV be a complete set containing
av b. SinceV is complete, eithea € V or b € V. Assume that the first applies. In
that casex € O1(N, V), by the first opening assumption and Definition 10. Assume
the second applies. In that case O1(N, V), by the second opening assumption and
Definition 10. Either wayx € O1(N, V), and thusx e O»(N,a v b) as required.
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For EQ, assumg € O,(N,a) andx - y. LetV be a complete set containiag By
Definition 10,x € O1(N, V). Since®; validates EQy € O;1(N, V), and soy € O,(N, a)
as required.m

Theorem 15 (Soundness, strong versionP,(N, A) € O,(N, A).

Proof. The proof is virtually the same as that for Theorem 8, but using Theorems 12
and 14.m

Theorem 16 (Completeness, strong versionD,(N, A) € D,(N, A).

Proof. We give an outline of the proof for a singleton input $af. The proof may
easily be generalized to an input set of arbitrary cardinality. For ease of exposition,
throughout the proof we write (SI,AND) to indicate an application of Sl followed by
that of AND. We break the argument into two cases.

Case l:ais inconsistent. In this case, there is exactly one completé sehtaininga;
itis £. S00,(N,a) = O1(N, L). Letxe O1(N, £). This means that - AL, x;, for
X1, ..., %0 € N(N). Letay, ..., a, be the body of the rules in question. We have AlL; &;.
A derivation of(a,x) from N may, then, be obtained as shown below.

(a1, %1) (an, Xn)
(ALra, ALy %)
SI (/\in=l ai’ X)

(SI,AND)

ALy % - X

EQ

ar AL g

(a,x)

Case2: ais consistent. Assume (for reductio) that O»(N, a) and thatx ¢ D,(N, a).
From the formerx -~ AjL; X;, for xq, ..., X, € h(N). In order to derive the contradiction
thatx ¢ O2(N,a), we start by showing thafta} can be extended to some “maximal”
V 2 {a} such thatx ¢ D,(N,V). By maximal, we mean that for a¥’ o V, X ¢
D,(N,V'). Thus,V is amongst the “biggest” input se¥scontaininga and not making
x derivable.

V is built from a sequence of se¥g, V1, Vo, ... as follows. Consider an enumeration
X1, X2, X3, ... Of all the formulae. We define:

Vo = {a}
V.o Vica U {Xa}, if X¢ Da(N, V-1 U {Xn})
n— .
V-1, otherwise
V=u{V,:n>0}

Itis a straightforward matter to show the following:
Fact1l x¢ Do(N,Vy), foralln> 0.
Fact2 V,cV, foralln>0.

Fact 3 For every finite subset\& V, V' c V,, for some > 0.
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By Fact 2,V includes{a} (= Vp).The argument may be continued thus:
Claim 1 x¢ Dy(N,V).

Proof of the claimAssume, to reach a contradiction, that D,(N, V). By compact-
ness forD,, x € D,(N, V') for some finiteV’ c V. By Fact 3,V’ ¢ V, for somen > 0.
By monotony in the right argument,e D,(N, V;)). This contradicts Fact 1.

Claim 2 Forall V' oV, xe Do(N,V').

Proof of the claimLet V' o V. So, there is somgsuch thaty € V' buty ¢ V. Any such
y is such thay = x,, for somen > 1. By Fact 2V, € V. So,y ¢ V,. By construction,
Vi1 = Vp, andx € Do(N, Vo1 U {y}) = Do(VVau {y}). ButVyu{y} cVu{y} cV'.
By monotony in the right argument f@,, we get thaix € D,(N, V'), as required.

Claim 3 V is consistent.

Proof of the claimAssume not. Since -+ AL, x;, for xq, ..., X, € h(N), a derivation of
(V,x) from N may be obtained by reiterating the argument under case 1, contradicting
Claim 1.

Claim 4 V is--complete; that is, for all y, eitheryV or -y € V.

Proof of the claim.Assumey ¢ VV and-y ¢ V for somey. By Claim 2, it follows that
x € Dy(N,Vu{y})andxe Dy(N,Vu{-y}). Thus,(bAay,x) and(c -y,x) are both
derivable fromN, whereb andc are conjunctions of elements @f The following is,
then, derivable:

(bAy,x) (CA =Y, X)
((bry) v (cA-y),Xx)
(bac,x)

Thus,x € D2(N, V), in contradiction with Claim 1.

OR
Sl

Claim 5 V is maximal consistent; that is, if V{y} is consistent, thengV.

Proof of the claimAssumey ¢ V. By Claim 4,-y € V. It, then, follows thaV u {y} is
inconsistent, as required.

We are almost finished. By Theorem 8 and Theorem 9, we K&\(&\,V) =
D1(N,V) € Do(N,V). Sox ¢ O1(N,V). Hencex ¢ O2(N,A). m

3 Iterated Case

3.1 Reusable I/O Operation

This section focuses on the question of how to handle iterations of successive detach-
ments. We redefine Makinson and van der Torre’s reusable output opevatioso
that it validates neither WO nor CT but ACT:
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ACT (a,x) (anxy) cT (a,x) (anxy)
(axny) (ay)

ACT and WO together imply CT.
Stolpe [40, 41] namesPN;” his own variant ofouts. He writes that the distinctive
rule of PN; is the rule of “mediated cumulative transitivity” (MCT):

(a,x) X = X (anxy)
(ay)
In fact, given the other rules in Stolpe’s system, MCT is equivalent to CT. This is easily
checked. The other rules are: SI, AND and EQ. On the one hand, given reflexivity for

+, MCT entails CT. For assum@, x) and(a A x,y). Sincex + x, a direct application
of MCT yields (a,y). On the other hand, given Sl, CT entails MCT:

MCT

X = X
(anxy) anx Fanax
- (a,x) (anX,y)
(a.y)
Notethat, given SlI, ACT implies the aggregative version of MCT:

C

(a,x) X'+ X (anxy)
(a, X' AYy)

In this respect, weakening has still a “ghostly” role to play for iteration of successive
detachments.
For the sake of conciseness, throughout this seddrwill denote the set of all
the Bs such tha ¢ B = Cn(B) 2 M(B). Intuitively, BY gathers all thés that contain
A and are closed under bomandM.

AMCT

Definition 17 (Semantics) x € O3(N, A) if and only if there is some finite M N such
that,

e M(Cn(A)) # 2, and
e forall B, if Be BY, then x-i- A M(B).

We do not single out any particul@ as “proper”. But we highlight two very useful
suchBs, which we call the smallest and the larges8)'; L.

A subsetM of N that makesx € O3(N,A) true is called an A-witness forx".
Unlike with Oy, we have the guarantee that sucMaloes not contain any rule that is
superfluous, viz. not required to get output

Theorem 18 If M is an A-witness for x, then - A h(M).

Proof. Let M be anA-witness forx. By Definition 17,M(Cn(A)) # @, andx -+
A M(B) for all Be BY. ConsideB = £. We havex -~ A M(L). ButM(£) = h(M),
and thus<x -~ Ah(M). m
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Theorem 19 (Factual monotony)We have O3(N,A;) < O3(N,A;) whenever
Cn(Al) c Cl’l(Az).

Proof. Assumex € O3(N, A1) andCn(A;) ¢ Cn(Ay). From the first, we get: there is
some finiteM; ¢ N such thatM;(Cn(A;)) # @ and, for allB ¢ B,';"f,

M1(B) = {Xq, ..., Xn} @ndXx -+ /n\xi Q)
i=1

Note that, by Theorem 18 -+ Ah(M;), and so the detour made in the proof of
Theorem 4 is no longer needed.

FromCn(A;) ¢ Cn(Ay), we getM;1(Cn(A1)) € M1(Cn(Az)). This implies that
M1(Cn(Az)) # @. Now, consider som®,; ¢ BQ\";. We haveA; c B;. Therefore,
Cn(Ay) € Cn(By) = B;. FromA; € Cn(Aq) < Cn(Ay), we then ge#; ¢ By, and hence
By € By". By (1), x - A M1(B1) -+ Ah(My). So,xe O3(N, A;) as required.m

We defineO3(N) = {(A,x) : xe O3(N,A)}.

Example 20 shows thaP; does not validate the rule of deontic detachment, and
hence does not validate CT.

Example 20 (Deontic detachment)Let N = {(T,a),(a,x)}. We have that ac
O3(N,T), since M= {(T,a)} is a T-witness for a. We also have thatexO3(N, a),

since M= {(a,x)} is an a-witness for x. But we do not have ©3(N, T). This may

be verified in two steps. First, we identify all the non-empty subsets M of N that are
triggered by the input, in the sense tha{@h(@)) # @. Next, we go through the list

of all these subsets, and check that, for none of them, the smallest relevant B outputs
heads whose conjunction is equivalent to x:

M B M(B)
{(T.a)} Cn(a) {a}
{(T,a)(a,x)} Cn(a,x) {a,x}

Definition 21 (Proof system) (a,x) € D3(N) if and only if there is a derivation of
(a,x) from N using the rule§SI, EQ, ACT)

(a,x) (anxy)

ACT @xny)

AND is derivable from Sl and ACT. We defif{é, x) € D3(N) andD3(N, A) as we did
for D;.

Theorem 22 O3 validates the rules P (for individual formulae a).

Proof. The argument for Sl is virtually the same as in the proof of Theorem 19. The
argument for EQ is straightforward, and is omitted. We show ACT. Assumexthat
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0O3(N,a), y € O3(N,an x) andxay ¢ O3(N,a). From the first two, it follows that
there are finiteM1, M, ¢ N such thatM;(Cn(a)) # @, M2(Cn(a,x)) +# @, and

X - /\ My(B) for all B ¢ BM" 2)
y - /\ M2(B) for all B e BM, 3)

By Theorem 18,
x -~ A h(Mp) (4)
y - /Ah(Mz) )

Therefore,

XAy = Ah(Mp) A (Ah(M2)) (6)
- /A h(M3) @)

whereM3; = M u M,. From the third opening assumption, sifdg(Cn(a)) # @, it
follows that there is somB; ¢ BQ"3 such that

not-(x Ay =+ /\ M3(B1) ) (8)

We haveM; (B;) ¢ M3(By), and soB; € BM. Thereforex € By, and hence A x € By.
SoB; € BM too, sinceM,(B;) ¢ M3(B1). Now,

Mg(Bl) = M]_(Bl) ] MQ(B]_)

whereA M1 (B;) -+ xandA Mz (By) =+ y. Thus,A M3(B;) -+ xAy. This contradicts
equation (8) abovenm

Theorem 23 (Soundness, strong versionPs(N, A) € O3(N, A).

Proof. The proof is virtually the same as that for Theorem 8 using Theorems 19 and
22.m

For future reference, we note the following:

Remark 24 ACT holds in the following variant forms

xe€ O3(N,A),ye O3(N,Au {x}) = xaye O3(N,A) (ACTy)
xe O3(N,A),ye O3(N,Cn(Au{x})) = xAaye O3(N,A) (ACT>)

Proof. For ACTy, this is just a matter of rerunning the argument for ACT in the proof
of Theorem 22, replacing everywhe&ith A, andas xand{a, x} with Au{x}. ACT,

follows from ACT; and factual monotony fo®3, Theorem 19. TriviallyCnCn(A u
{x}) cCn(Au{x}), and saO3(N,Cn(Au{x})) € O3(N,Au{x}). m

Theorem 25 (Completeness, strong versionD3(N, A) € D3(N, A).
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Proof. We give an outline of the proof for the particular case wh&iis a singleton
set{a}. Suppose that ¢ O3(N,a). To show:x € D3(N,a). From the former, there is
some finiteM ¢ N such thatM(Cn(a)) # @ and, for allB € BM, x -+~ A M(B).

PutB; = Cn({a} uD3(M,a)). We havea € B; = Cn(B;). We also havéM(B;) #
@, becaus€n(a) c B;. A phasing result established by Makinson and van der Torre
[26] tells us that in the proof system correspondingutd the rule WO can always be
applied last. This allows, then, to establish thM¢B;) c By, so thatB; € BM. The
opening assumption, then, yields:— A M(By).

Based on this, one gets a derivation(af x) from N as follows. First, note that
M(B;) # @. By Definition 3, one getx ¢ O1(N, {a} u D3(M,a)). By Theorem 9,
x e D1(N,{a}uD3(M,a)), and thusx € D3(N, {a} u D3(M,a)). This means that ¢
D3(N, {a,a,...,an}), where, for eacla, a € D3(M,a). By AND, A, & € D3(M, a).
SinceM < N, AlL; & € D3(N,a). A derivation of(a,x) from N is shown below.

(aALa)  (@n(ALa).x) XEALL &
EQ (a,AlL1a A X) ALL @ A X X
(a,x)
Theargument forx - AL, & appeals to two lemmas:
e X+ Ah(M), Theorem 18

ACT

e h(M) + &, for all 1 < i < n- the proof of this is by induction on the length of
the derivation of a, &)

The argument may be generalized to an inputiset arbitrary cardinality.m

3.2 Basic Reusable 1/O Operation

This section shows that the two accounts discussed in the previous sections may be
combined to yield a new basic reusable operatiof, with ACT and OR, but neither

CT nor WO amongst its primitive rules. Our proposed treatmer®ofs similar to

that of 0,. We set:

Definition 26 (Semantics) O4(N,A) =n{O3(N,V) : Ac V,V completg.
Theorem 27 O3(N, A) € O4(N, A).

Proof. Let x € O3(N, A). LetV be a complete set such thatc V. By monotony for
Cn,Cn(A) cCn(V). By Theorem 19x € O3(N, V). By Definition 26,x € O4(N, A)
as required.m

Theorem 28 (Factual monotony) O4(N, A) € O4(N, B) if Cn(A) cCn(B).

Proof. AssumeCn(A) c Cn(B). Let x € O4(N,A). To show: x € O4(N,B). Let
V be a complete set such thRtc V. By monotony forCn,Cn(B) < Cn(V). Also
Cn(V) = V. HenceCn(B) c V. From this and the opening assumpti@n(A) c V.
So,A c V. From this andk € O4(N, A), it follows thatx € O3(N, V) by Definition 26.
Thus,x € O4(N, B) as required.m

Deontic detachment still fails, as illustrated below.
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Example 29 (Deontic detachment)PutN = {(T,a), (a,x)}. In Example 20, on p. 200,
we pointed out that a O3(N, T) and xe O3(N,a). By Theorem 27, a O4(N, T) and
x e O4(N,a). ButL qualifies as a complete set extendiiig. We have:

M B M(B)
{(ra)} £ {a}
{(rra).(ax)} £ {ax

Thus, x¢ O3(N, £), and hence ¥ O4(N, T).

Definition 30 (Proof theory) (a,x) € D4(N) if and only if there is a derivation of
(a,x) from N using the rules dP; supplemented with

(a,x) (b,x)
(avb,x)

OR

Thefollowing lemma will come in handy:
Lemma 31 If V is a complete set, then CY( {x}) is also a complete set.

Proof. Eitheri)x e V orii) x¢ V. In case i), we have th&n(Vu {x}) =Cn(V) =V is
a complete set. In case iV,is a maximal consistent set, in which c&e(Vu{x}) = £
is a complete setm

Theorem 32 O, validatesthe rules ofD, (for individual formulae a).

Proof. For Sl, assumex € O4(N,a) andb + a. LetV be a complete set such that
{b} c V. We haveCn(b) c V. From the second opening assumpti@} c Cn(a) ¢
Cn(b) c V. From this and the first opening assumptiare O3(N,b), by Definition
26. Hencex € O4(N, b), Definition 26 again.

For OR, assumg e O4(N,a) andx € O4(N,b). LetV be a complete set containing
av b. SinceV is complete, eithea € V or b € V. Assume that the first applies. In
that casex € O3(N, V), by the first opening assumption and Definition 26. Assume
the second applies. In that case O3(N, V), by the second opening assumption and
Definition 26. Either wayx € O3(N, V), and thusce O4(N,av b) as required.

For EQ, assume € O4(N,a) andx +~ y. LetV be a complete set containirag
By Definition 26,x € O3(N, V). Trivially, y € O3(N, V), sincex -i- y. Soy € O4(N, a)
as required.

For ACT, assuma € O4(N,a),y € O4(N,arx) andxay ¢ O4(N,a). From the third
opening assumption, there is some complet®setch thag € V andxay ¢ O3(N,V),
by Definition 26. Since ¢ V, the first opening assumption implies: O3(N, V), by
Definition 26 again. Becaus®; satisfies ACT (cf. Remark 24)y ¢ O3(N, V') where
V' =Cn(Vu{x}). Onthe one hand A x € V'. On the other hand, by Lemma 31,
is a complete set. Sp¢ O4(N, a A x)—contradiction.m

Theorem 33 (Soundness, strong versionP,(N, A) € O4(N, A).

Proof. The proof is virtually the same as that for Theorem 8, but using Theorems 28
and 32.m
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Theorem 34 (Completeness, strong versionD4(N, A) € D4(N, A).

Proof. The proof is similar to that for Theorem 16. We quickly rerun the verifications
for the case wherA is a singleton set, still breaking the argument into two cases.

Case 1: a is inconsistent. The argument remains unchanged. Note that the pair
(AL &, AlL; %) is obtained using AND, which itself follows from ACT.

Case 2:ais consistent. This case may be disposed of using the same kind of max-
imality argument as in the proof of Theorem 16. Starting witlk O4(N,a) and

x ¢ D4(N,a), one first shows thafa} can be extended to some maxinvap {a} such
thatx ¢ D4(N,V). One then shows that is a complete set, and that¢ O3(N,V).

(The latter now follows from Theorems 23 and Z35(N, V) = D3(N,V) € D4(N,V).)
Definition 26 then yields the required contradictior¢ O4(N,a). m

4 Conclusion

This paper has developed variants of the standard I/O operations with the following
two salient features. First, they do not satisfy the rule of “weakening the output” (WO).
Second, instead of satisfying the traditional rule of “cumulative transitivity” (CT), they
satisfy a variant rule called “aggregative cumulative transitivity” (ACT). Each of the
proposed variant operations has been given both a semantic characterization and an
axiomatic characterization.

We end this paper by listing a number of topics for future research.

First, our variants obut, andout, have an unexpected feature. We haug(N, A) =
Cn(O1(N,A)) andouz(N,A) = Cn(O3(N,A)). But we do not haveut(N,A) =
Cn(O2(N, A)), nor do we haveuts(N,A) = Cn(O4(N,A)). For a counter-example,
takeN = {(a,x), (b,xAy)} andA = {av b}. We leave it for future research to define
variants ofout, andout, satisfying this property.

Second, we have put to one side the use of constraints, whose aim is to filter out
excess output using a consistency check mechanism [27]. Although it remains possible
in principle to develop constrained 1/O logic on top of the present framework, we still
have to investigate the effects of doing it. There is a known connection between the
constrained version of I/O logic deployed on top of the standard 1/O logics and some
well-established non-monotonic formalisms, like Reiter's default logic and the AGM
maxi-choice revision operation [1]. This connection was discovered by Makinson and
van der Torre [27], with reference to approaches based on so-called belief sets, in which
an agent's beliefs are characterized by deductively closed sets of sentences. It would
be interesting to know if a similar connection can be made between our framework and
variant non-monotonic systems based on so-called belief bases (see, e.g., [11, 29]).

Third, in the papers [36, 38], we have described a family of variant systems with
a consistency check built in the semantics and a consistency proviso restraining the
application of AND and ACT. The main motivation is the so-called pragmatic oddity
[39]. The case obuty has not been handled yet.
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